1. A curve <i>C</i> has	parametric	equations
--------------------------------	------------	-----------

$$x = \frac{t^2 + 5}{t^2 + 1}$$
 $y = \frac{4t}{t^2 + 1}$ $t \in \mathbb{R}$

Show that all points on C satisfy

$$(x-3)^2 + y^2 = 4$$
(3)

2. T	ne curve	C has	parametric	equations
-------------	----------	-------	------------	-----------

$$x = t^2 + 6t - 16$$
 $y = 6 \ln(t+3)$ $t > -3$

(a) Show that a Cartesian equation for C is

$$y = A \ln (x + B) \qquad x > -B$$

where A and B are integers to be found.

(3)

The curve C cuts the y-axis at the point P

(b) Show that the equation of the tangent to C at P can be written in the form

$$ax + by = c \ln 5$$

where a, b and c are integers to be found.

(4)